Лечение нарушений митохондриального окисления. Митохондриальные заболевания у детей


Митохондриальные заболевания (МЗ) — группа наследственных заболеваний, связанных с дефектами в функционировании митохондрий, приводящими к нарушениям энергетических функций в клетках.

Историческая справка:

Понятие «митохондриальные болезни» сформировалось в медицине в конце ХХ века. В первую очередь были изучены болезни, связанные с мутациями митохондриальной ДНК, открытой в начале 60-ых годов. Полная первичная структура митохондриальной ДНК человека была опубликована в 1981 го¬ду и уже в конце 80-ых годов была доказана ведущая роль ее мутаций в развитии ряда наследственных заболеваний. К последним относятся: наследственная атрофия зрительных нервов Лебера, синдром NARP (нейропатия, атаксия, пигментный ретинит), синдром MERRF (миоклонусэпилепсия с "рваными" красными волокнами в скелетных мышцах), синдром MELAS (митохондриальная энцефаломиопатия, лактат-ацидоз, инсультоподобные эпизоды), синдром Кернса-Сейра (пигментный ретинит, наружная офтальмоплегия, блокада сердца, птоз, мозжечковый синдром), синдром Пирсона (поражение костного мозга, панкреатическая и печеночная дисфункции) и многие другие.

В меньшей степени изучены наследственные митохондриальные дефекты, связанные с повреждением ядерного генома.

Патогенез.

Митохондрии отвечают за выработку большей части энергии, необходимой для функционирования клеток. Фактически они являются настолько важным источником энергии, что в каждой клетке их сотни. При МЗ могут «выключиться» как часть митохондрий, так и все они, что приводит к прекращению выработки необходимой энергии

Поскольку наиболее энергоемкими являются нервные и мышечные клетки, при МЗ наиболее распространены мышечные и неврологические проблемы, такие, как мышечная слабость, непереносимость физических нагрузок, потеря слуха, нарушения баланса и координации, эпиприступы.

Митохондриальные зааболевания, вызывающие выраженные мышечные проблемы, именуют митохондриальными миопатиями (myo - означает «мышца», а pathos - «болезнь»), а те, которые вызывают как мышечные, так и неврологические проблемы - митохондриальными энцефаломиопатиями (encephalo - «мозг»)

Когда клетка заполнена дефектными митохондриями, она не только лишена АТФ, но в ней могут накапливаться неиспользуемые молекулы топлива и кислород, что приводит к катастрофическим последствиям. В этом случае избыточные молекулы топлива используются для синтеза АТФ неэффективно, в результате чего могут образовываться потенциально опасные продукты, такие, как молочная кислота (Это также происходит, когда клетки испытывают недостаток кислорода, например - мышечные клетки при усиленных физических нагрузках). Накопление молочной кислоты в крови - лактатацидоз - ассоциировано с мышечной усталостью, и может вызывать повреждение нервной и мышечной тканей.

При этом неиспользуемый в клетке кислород может трансформироваться в разрушительные соединения, именуемые реактивными формами кислорода, включая т. н. свободные радикалы (Они являются мишенью для т. н. антиоксидантных препаратов и витаминов).

Синтезированная в митохондриях АТФ - основной источник энергии для сокращения мышечных и возбуждения нервных клеток (т. к. клетки этих тканей наиболее метаболически активны, энергетически зависимы). Таким образом, нервные и мышечные клетки особенно чувствительны к дефектам митохондрий. Комбинированный эффект от потери энергии и накопления токсинов в этих клетках, надо полагать, и вызывает развитие симптомов митохондриальных миопатий и энцефаломиопатий

Клиника

В случаях, когда человек с мутацией в митохондриальном гене несет смесь нормальной и мутантной ДНК - мутации поначалу могут вообще не иметь внешних проявлений. Нормальные митохондрии до поры до времени обеспечивают клетки энергией, компенсируя недостаточность функции митохондрий с дефектами. На практике это проявляется более или менее длительным бессимптомным периодом при многих митохондриальных заболеваниях. Однако рано или поздно наступает момент, когда дефектные формы накапливаются в количестве, достаточном для проявления патологических признаков. Возраст манифестации заболевания варьирует у разных больных. Раннее начало заболевания приводит к более тяжелому течению и неутешительному прогнозу.

Характерные признаки митохондриальных цитопатий:

Скелетные мышцы: низкая толерантность к физической нагрузке, гипотония, проксимальная миопатия, включающая фациальные и фарингеальные мышцы, офтальмопарез, птоз

Сердце: нарушения сердечного ритма, гипертрофическая миокардиопатия

Центральная нервная система: атрофия зрительного нерва, пигментная ретинопатия, миоклонус, деменция, инсультоподобные эпизоды, расстройства психики

Периферическая нервная система: аксональная нейропатия, нарушения двигательной функции гастроинтестинального тракта

Эндокринная система: диабет, гипопаратиреоидизм, нарушение экзокринной функции панкреас, низкий рост

Таким образом, типичны для митохондриальных заболеваний вовлеченность разных органов и одновременное проявление внешне не связанных между собой аномалий. Примерами служат:

1. Мигрени с мышечной слабостью

2. Наружная офтальмоплегия с нарушением проводимости сердечной мышцы и мозжечковой атаксией

3. Тошнота, рвота с оптической атрофией и кардиомиопатией

4. Низкорослость с миопатией и инсультоподобным и эпизодами

5. Экзокринная дисфункция поджелудочной железы с сидеробластной анемией

6. Энцефало- миопатия с диабетом

7. Диабет с глухотой

8. Глухота с наружной офтальмоплегией, птозом и ретинопатией

9. Задержка развития или потеря навыков и офтальмоплегия, офтальмопарез

Характер и тяжесть клинических проявлений митохондриальных болезней определяется:

Тяжестью мутации мтДНК;

Процентным содержанием мутантной мтДНК в конкретных органах и тканях;

Энергетической потребностью и функциональным резервом органов и тканей, содержащих мтДНК (их “порогом чувствительности” к дефектам окислительного фосфори лирования).

Миопатия

Основные симптомы митохондриальной миопатии - истощение мышц и их слабость, и непереносимость физических нагрузок.

У некоторых индивидов слабость наиболее выражена в мышцах, контролирующих движения глаз и век. Два наиболее частых следствия такой слабости - это постепенный паралич движения глаз (прогрессирующая наружная офтальмоплегия, ПНО), и опущение верхних век (птоз). Зачастую люди автоматически компенсируют ПНО движениями головы для того, чтобы смотреть в различных направлениях, и могут даже не подозревать о каких либо проблемах. Птоз потенциально более неприятен, поскольку может ухудшить зрение, а также придает лицу апатичное выражение, но он может быть скорректирован хирургическим путем, либо использованием специальных очков с устройством для подъема века

Митохондриальные миопатии могут также вызывать слабость других мышц лица и шеи, что приводит к заплетающейся речи и трудностям с глотанием. В этих случаях могут помочь речевая терапия (занятия с логопедом) или включение в рацион питания таких продуктов, которые легче проглатываются.

Непереносимость физических нагрузок, также именуемая усталостью напряжения - это необычное чувство утомления в ответ на физическую активность. Степень этой непереносимости существенно варьируется у разных людей. Некоторые могут испытывать проблемы только при занятиях физкультурой, таких например, как оздоровительный бег, в то время как у других возникают сложности с выполнением повседневных дел, например с выходом к почтовому ящику или поднятием пакета молока.

Энцефаломиопатия

Митохондриальная энцефаломиопатия, как правило, включает некоторые из вышеупомянутых симптомов миопатии, дополненными одним или несколькими неврологическими симптомами. Также как и при миопатии, наблюдается значительная вариабельность симптомов обоего типа и тяжести течения у разных индивидов.

Среди наиболее частых симптомов митохондриальной энцефаломиопатии - нарушения слуха, мигренеподобные головные боли и эпиприступы. По крайней мере, в одном синдроме головные боли и эпиприступы часто сопровождается инсультоподобными эпизодами

Дополнительно к поражению глазных мышц, митохондриальная энцефаломиопатия может поражать как сами глаза, так и участки головного мозга, ответственные за зрение. Например, потеря зрения вследствие оптической атрофии (дегенерации зрительного нерва) или ретинопатии (дегенерации некоторых клеток, выстилающих глазное дно) - обычные симптомы митохондриальной энцефаломиопатии. По сравнению с мышечными проблемами, эти эффекты с большей вероятностью приводят к серьезным нарушениям зрения

Довольно часто митохондриальная энцефаломиопатия вызывает атаксию, или сложности с балансом и координацией.

Диагностика.

Ни один из отличительных симптомов митохондриального заболевания - мышечная слабость, непереносимость нагрузок, ухудшение слуха, атаксия, эпиприступы, неспособность к обучению, катаракта, диабет и низкорослость - не является уникальным именно для такого заболевания. Однако комбинация трех или более из этих симптомов у одного индивида свидетельствует в пользу митохондриального заболевания, особенно если симптомы затрагивают более одной системы организма

Физикальное обследование обычно включает в себя тесты на силу и выносливость, такие например, как повторяющиеся сжатия-разжатия кулака, или подъем и спуск по небольшой лестнице. Неврологическое обследование может включать в себя проверку рефлексов, зрения, речи и базовых когнитивных способностей.

Существует ряд рутинных клинических методов исследования, которые можно использовать при подозрении на митохондриальную цитопатию:

Лактатный ацидоз является практически постоянным спутником митохондриальных болезней (только этот признак является недостаточным для постановки диагноза, так как он может выявляться и при других патологических состояниях; в этом отношении может быть полезным измерение уровня лактата в венозной крови после умеренной физической нагрузки, например на велоэргометре)

ЭМГ-исследование - само по себе данное исследование также не могут быть маркером митохондриальной цитопатии; вместе с тем нормальная или близкая к нормальной ЭМГ у пациентов с выраженной мышечной слабостью может быть подозрительной в отношении митохондриальной патологии.

ЭЭГ - данные ЭЭГ не является достаточно специфическими

Биопсия скелетных мышц - является наиболее информативным методом при постановке диагноза митохондриальной цитопатии - помимо обнаружения RRF при трехцветной окраске по Гомори, полезными являются другие гистохимические и иммунологические исследования: окраска на цитохромс-оксидазу и сукцинатдегидрогеназу, иммунногистохимические исследования с применением антител к отдельным субъединицам дыхательного комплекса; мышечная ткань удобна для биохимического исследования респираторной цепочки, а также как материал для генетического исследования.

Образцы мышечных биоптатов целесообразно делить на три части - одна для микроскопического исследования (гистология, гистохимия и электронная микроскопия), вторая для энзимологического и иммунологического анализа (изучение характеристик компонентов дыхательной цепи) и третья - непосредственно для молекулярно-генетического анализа. Поиск известных мутаций на мышечном материале позволяет в большинстве случаев успешно осуществлять ДНК-диагностику болезни. При отсутствии из вестных мутаций мтДНК в мышечной ткани следующим этапом является развернутый молекулярно-генетический анализ - секвенирование всей цепи мтДНК (или кандидатных генов ядерной ДНК) с целью выявления нового варианта мутации.

Электронно-микроскопическое исследование скелетных мышц - дает прекрасные результаты, поэтому данный метод надо использовать, если имеется такая возможность

Лечение.

Что касается терапии митохондриальных цитопатий, то речь может идти пока только о симптоматической.

Лечение митохондриальных болезней проводится обычно по двум основным направлениям:

Повышение эффективности энергетического обмена в тканях (тиамин, рибофлавин, никотинамид, коэнзим Q10 (кудесан), L-карнитин (элькар), препараты кальция и магния. , витамин С, цитохром С)

Предупреждение повреждения митохондриальных мембран свободными радикалами с помощью антиоксидантов (витамин Е, a-липоевая кислота) и мембранопротекторов.

В практику входят всё новые препараты комбинированного действия, такие, например, как идебенон (Нобен) - улучшенный структурный аналог коэнзима Q10, благоприятно влияющий на активность дыхательного пути и обладающий выраженным антиоксидантным, антиапоптотическим и нейротрофическим действием.

Очевидно, что расширение терапевтического арсенала при митохондриальных болезнях диктует настоятельную необходимость того, чтобы практические врачи различных специальностей (неврологи, психиатры, педиатры, генетики, гематологи и др.) были хорошо знакомы с алгоритмом диагностики этих заболеваний.

Введение …………………………………………………………………………………………………………………………………………..2

Аутосомный тип наследования ……………………………………………………………………………………………………….3

Сцепленное с полов наследование …………………………………………………………………………………………………4

Митохондриальный вид наследования ………………………………………………………………………………………….5

Наследование сложных признаков …………………………………………………………………………………………………5

Используемая литература ……………………………………………………………………………………………………………....7

Введение:

Наследственность – свойство клеток или организмов в процессе самовоспроизведения передавать новому поколению способность к определенному типу обмена веществ и индивидуального развития, в ходе которого у них формируются общие признаки и свойства данного типа и вида организмов, а также некоторые индивидуальные особенности родителей.

Носители наследственности

ДНК. Многоклеточные организмы, как здания, сложены из миллионов кирпичиков – клеток. Основным «строительным» материалом клетки являются белки. У каждого типа белка – своя функция: одни входят в состав клеточной оболочки, другие – создают защитный «чехол» для ДНК, третьи передают «инструкции» о том, как производить белки, четвертые регулируют работу клеток и органов, и т.д. Каждая молекула белка представляет собой цепочку из многих десятков, даже сотен звеньев – аминокислот; такую цепь называют полипептидной. Сложные белки могут состоять из нескольких полипептидных цепей.

В процессе жизнедеятельности белки расходуются, и потому регулярно воспроизводятся в клетке. Их полипептидные цепи строятся последовательно – звено за звеном, и эта последовательность закодирована в ДНК. ДНК – длинная двухцепочечная молекула; состоит из отдельных звеньев – нуклеотидов. Всего имеется четыре типа нуклеотидов, обозначаемых как А (аденин), Г (гуанин), Т (тимин), Ц (цитозин). Тройка нуклеотидов (триплет) кодирует одну аминокислоту согласно т.н. генетическому коду. ДНК хранится в ядре клетки в виде нескольких «упаковок» – хромосом.

Гены. Участок ДНК, в котором закодирована определенная полипептидная цепь, называется геном. Скажем, его фрагмент «TЦT ТГГ» кодирует аминокислотное звено: «серин-триптофан». Основная функция генов – поддержание жизнедеятельности организма путем производства белков в клетке, координация деления и взаимодействия клеток между собой.

Гены у разных индивидов даже одного вида могут различаться – в пределах, не нарушающих их функцию. Каждый ген может быть представлен одной или большим числом форм, называемых аллелями. Все клетки организма, кроме половых клеток, содержат по два аллеля каждого гена; такие клетки называют диплоидными. Если два аллеля идентичны, то организм называют гомозиготным по этому гену; если аллели разные, то – гетерозиготным.

Аллели эволюционно возникли и возникают как мутации – сбои в передаче ДНК от родителей к детям. Например, если бы в указанной выше нуклеотидной последовательности «TЦT ТГГ» третий нуклеотид, Т, ошибочно передался бы ребенку как Ц, то вместо родительского «серин-триптофан» он бы имел фрагмент белка «аланин-триптофан», поскольку триплет TЦЦ кодирует аминокислоту аланин. Аллели, прошедшие апробацию отбором, и образуют то наследственное разнообразие, которое мы сейчас наблюдаем, – от цвета кожи, глаз и волос до физиологических и эмоциональных реакций.

Хромосомы. ДНК защищена от внешних воздействий «упаковкой» из белков и организована в хромосомы, находящиеся в ядре клетки. В хромосоме регулируется активность генов, их восстановление при радиационном, химическом или ином типе повреждений, а также их репликация (копирование) в ходе клеточных делений – митоза и мейоза Каждый вид растений и животных имеет определенное число хромосом. У диплоидных организмов оно парное, две хромосомы каждой пары называются гомологичными. Среди них различают половые (см. ниже) и неполовые хромосомы, или аутосомы. Человек имеет 46 хромосом: 22 пары аутосом и одну пару половых хромосом; при этом одна из хромосом каждой пары приходит от матери, а другая – от отца. Число хромосом у разных видов неодинаково. Например, у классического генетического объекта – плодовой мушки дрозофилы – их четыре пары. У некоторых видов хромосомные наборы состоят из сотен пар хромосом; однако количество хромосом в наборе не имеет прямой связи ни со сложностью строения организма, ни с его эволюционным положением.

Помимо ядра, ДНК содержится в митохондриях, а у растений – еще и в хлоропластах. Поэтому те гены, которые находятся в ядерной ДНК, называют ядерными, а внеядерные, соответственно, митохондриальными и хлоропластными. Внеядерные гены контролируют часть энергетической системы клеток: гены митохондрий отвечают в основном за синтез ферментов реакций окисления, а гены хлоропластов – реакций фотосинтеза. Все остальные многочисленные функции и признаки организма определяются генами, находящимися в хромосомах.

Передача генов потомству. Виды поддерживают свое существование сменой одних поколений другими. При этом возможны различные формы размножения: простое деление, как у одноклеточных организмов, вегетативное воспроизводство, как у многих растений, половое размножение, свойственное высшим животным и растениям. Половое размножение осуществляется с помощью половых клеток – гамет (сперматозоидов и яйцеклеток). Каждая гамета несет одинарный, или гаплоидный, набор хромосом, содержащий только по одному гомологу; у человека это 23 хромосомы. Соответственно, каждая гамета содержит только один аллель каждого гена. Половина гамет, производимых особью, несет один аллель, а половина – другой. При слиянии яйцеклетки со сперматозоидом – оплодотворении, – образуется одна диплоидная клетка, называемая зиготой. Из клеток, получающихся в результате митотических делений зиготы в процессе индивидуального развития (онтогенезе), формируется новый организм. В зависимости от того, какие аллели несет данная особь, у нее развиваются те или иные признаки. Отметим, что равновероятное распределение аллелей по гаметам было открыто Грегором Менделем в 1865 и известно как Первое правило Менделя.

Аутосомный тип наследования:

Аутосомно-доминантный тип наследования Основные критерииразных типов наследования следующие. При аутосомно-доминантном типе наследования мутантный ген реализуется в признак в гетерозиготном состоянии, то есть для развития болезни достаточно унаследовать мутантный аллель от одного из родителей. Для этого типа наследования (как для аутосомного типа в целом) характерна равная вероятность встречаемости данного признака, как у мужчин, так и у женщин. Большинство болезней этого типа при проявлении у гетерозигот не наносят серьезного ущерба здоровью человека, и в большинстве случаев не влияют на репродуктивную функцию. Гомозиготы же, как правило, нежизнеспособны. Болезнь встречается в каждом поколении. Так как у больного родителя мутантный ген локализован в половине гамет, которые могут быть оплодотворены в равной степени с нормальными клетками, вероятность возникновения болезни у детей 50 %. Однако, анализируя родословные, необходимо помнить о возможности неполного пенетрирования доминантного аллеля, обусловленного взаимодействием генов или факторами среды. Все фенотипически здоровые дети будут здоровы и генетически, если пенетрантность мутантного гена полная. В случае низкой пенетрантности в некоторых поколениях патологические признаки не проявляются. Необходимо также отметить, что некоторые заболевания проявляются не с момента рождения, а лишь в определенном возрасте. Это создает определенные трудности для установления типа наследования. Наиболее часто в клинической практике встречаются следующие болезни с аутосомно-доминантном типом наследования: нейрофиброматоз (болезнь Реклингхаузена), синдром Марфана (пенетрантность около 30 %), миотическая дистрофия, хорея Гентингтона, синдром Элерса-Данло.

Аутосомно-рецессивный вид наследования . При аутосомно-рецессивном типе наследования мутантный ген реализуется в признак в гомозиготном состоянии. Гетерозиготы клинически не отличаются от здоровых лиц. У фенотипически здоровых родителей, но имеющих рецессивный ген патологического признака, вероятность рождения больных детей составит 25 %, еще 25 % будут здоровы и фенотипически и генетически, а оставшаяся половина окажутся гетерозиготными носителями патологического признака, как и их родители. Вероятность заболевания мальчиков и девочек одинаковая. В родословной при аутосомно-рецессивном наследовании заболевание может проявляться через одно или несколько поколений. Браки гетерозигот (здоровых) с гомозиготами (больными) встречаются в основном среди кровнородственных браков. Вероятность рождения больных детей при этом возрастает до 50 %. Браки, когда оба родителя гомозиготны достаточно редки. Все дети в этих семьях будут гомозиготами, а потому больными. Таким образом, частота возникновения болезней, наследуемых по аутосомно-рецессивному типу, зависит от концентрации рецессивного гена в популяции и находится в прямой зависимости от степени распространения мутантного гена. Особенно повышается частота рецессивных наследственных болезней в изолятах и среди населения с высоким процентом кровнородственных браков. Наиболее типичными болезнями с аутосомно-рецессивным типом наследования являются муковисцидоз, фенилкетонурия, галактоземия, адреногенитальный синдром, мукополисахаридозы.

Возникновение этих заболеваний связано с изменением ДНК митохондрий. Геном митохондриальной ДНК полностью расшифрован. В нем есть гены рибосомальных РНК, 22 тр-РНК и 13 полипептидов, участвующих в реакциях окислительного фосфорилирования. Большинство митохондриальных белков кодируются генами ядерной ДНК, транслируются в цитоплазме, а затем поступают в митохондрии. ДНК митохондрий наследуется по материнской линии. В цитоплазме яйцеклетки содержатся тысячи митохондрий, в то время как митохондрии сперматозоида не оказываются в зиготе. Поэтому мужчины наследуют мт-ДНК от своих матерей, но не передают е своим потомкам.

В каждой митохондрии содержится 10 и более молекул ДНК. Обычно все копии мт-ДНК идентичны. Иногда, однако, в мт-ДНК возникают мутации, которые могут передаваться как дочерним митохондриям, так и дочерним клеткам.

Клинически мутации могут проявить себя в виде различных симптомов в любом органе или ткани и в любом возрасте. Наиболее энергозависимыми, а поэтому уязвимыми являются мозг, сердце, скелетные мышцы, эндокринная системы, печень. Поражения нервной системы обычно сопровождаются судорогами, нарушение координации (атаксия), снижением интеллекта, нейросенсорной глухотой.

Примеры наследственных болезней: атрофия дисков зрительных нервов Лебера (острая потеря центрального зрения, может проявиться в любом возрасте), митохондриальная энцефаломиопатия, синдром миоклонической эпилепсии и рваных мышечных волокон.

Мультифакторные заболевания

Возникают у лиц с соответствующим сочетанием предрасполагающих аллелей, имеет место полиморфизм клинических признаков, заболевания проявляются в любом возрасте, в патологический процесс может быть вовлечена любая система или орган. Примеры: гипертоническая болезнь, атеросклероз, язвенная болезнь, шизофрения, эпилепсия, глаукома, псориаз, бронхиальная астма и др.

Особенности :

    Высокая частота встречаемости в популяции

    Существование различных клинических форм

    Зависимость степени риска для родственников больного:

Чем реже болезнь в популяции, тем выше риск для родственников пробанда

Чем сильнее выражена болезнь у пробанда, тем выше риск заболевания у его родственника

Риск для родственников пробанда будет выше, если имеется другой больной кровный родственник.

Медико-генетическое консультирование

Это один из видов специализированной медицинской помощи населению. В консультации работают врачи-генетики, а также другие специалисты (акушеры, педиатры, эндокринологи, невропатологи). Основные задачи консультации:

Оказание помощи врачам в постановке диагноза наследственного заболевания

Определение вероятности рождения ребенка с наследственной патологией

Объяснения родителям смысла генетического риска

Этапы консультирования:

1.Обследование больного и постановка диагноза наследственного заболевания . Для этого используются различные методы: цитогенетический, биохимический, ДНК-диагностики. Показаниями для консультирования являются:

Установленная или подозреваемая наследственная болезнь в семье

Рождение ребенка с пороками развития

Повторные спонтанные аборты, мертворождения, бесплодие

Отставание детей в психическом и физическом развитии

Нарушение полового развития

Кровнородственные браки

Возможное воздействие тератогенов в первые 3 месяца беременности

2. Определение риска рождения больного ребенка . При определении риска возможны следующие ситуации:

а) при моногенно наследуемых заболеваниях расчет риска основывается на законах Г.Менделя. При этом учитываются генотип родителей и особенности проявление гена (пенентрантность и экспрессивность).

б) при полигенно наследуемых заболеваниях (болезни с наследственной предрасположенностью) для расчета риска используют специальные таблицы и при этом учитываются следующие особенности:

Чем реже встречается болезнь в популяции, тем выше риск для родственников пробанда

Чем сильнее выражена болезнь у пробанда, тем выше риск заболевания у его родственников

Риск для родственников пробанда будет выше, если имеется другой больной кровный родственник

в) спорадические случаи заболевания: у фенотипически здоровых родителей рождается больной ребенок, при этом отсутствуют данные в сходной патологии у родственников. Причины:

Генеративные мутации у кого-то из родителей или соматические мутации на ранних стадиях эмбрионального развития

Переход рецессивного гена в гомозиготное состояние

Сокрытие одним из родителей семейной патологии.

3. Заключение консультации и советы родителям. Генетический риск до 5% рассматривается как низкий и не является противопоказанием для деторождения. Риск от 6 до 20 % - определяется как средний и расценивается как противопоказание к зачатию или как показание к прерыванию беременности. Независимо от степени риска целесообразно проведение пренатальной диагностики.

Пренатальная (дородовая) диагностика.

Многие болезни можно выявит еще до рождения ребенка. При обнаружении тяжелых заболеваний у плода, врач предлагает семье искусственное прерывание беременности. Окончательное решение вопроса об этом должна принять семья. К методам дородовой диагностики относятся:

1. Биопсия ворсин хориона. Производится на 7-9 неделе беременности. Служит для выявления хромосомных дефектов, активности ферментов с целью диагностики наследственных болезней обмена и ДНК- диагностики.

2. Амниоцентез (взятие околоплодной жидкости с содержащимися в ней клетками). Производится начиная с 12-14 недель беременности.

3. Кордоцентез (взятие крови из пупочных сосудов) производится на 20-25 неделе беременности и используется для тех же целей.

4. Анализ крови матери. Выявление α-фетопротеина (белок, который вырабатывается печенью плода и проникает через плацентарный барьер в кровь матери). Увеличение его в несколько раз на 16 неделе беременности может указывать на дефекты нервной трубки. Снижение его концентрации по отношении к норме может указывать на синдром Дауна.

5. Ультразвуковое исследование плода производится на всех сроках беременности. УЗИ исследование – главный метод визуального определения пороков развития плода и состояния плаценты. УЗИ исследование рекомендуется проводить всем женщинам не менее 2 раз в течение беременности.



Митохондриальная патология и проблемы патогенеза психических нарушений

В.С. Сухоруков

The mitochondrial pathology and problems of pathophysiology of mental disorders

V.S. Sukhorukov
Московский НИИ педиатрии и детской хирургии Росмедтехнологий

В течение последних десятилетий в медицине активно развивается новое направление, связанное с изучением роли нарушений клеточного энергообмена - процессов, затрагивающих универсальные клеточные органеллы - митохондрии. В связи с этим появилось понятие «митохондриальные болезни».

Митохондрии выполняют много функций, однако их основная задача - образование молекул АТФ в биохимических циклах клеточного дыхания. Основными происходящими в митохондриях процессами являются цикл трикарбоновых кислот, окисление жирных кислот, карнитиновый цикл, транспорт электронов в дыхательной цепи (с помощью I-IV ферментных комплексов) и окислительное фосфорилирование (V ферментный комплекс) . Нарушения функций митохондрий относятся к важнейшим (часто ранним) этапам повреждения клеток. Эти нарушения ведут к недостаточности энергообеспечения клеток, нарушению многих других важных обменных процессов, дальнейшему развитию клеточного повреждения вплоть до гибели клетки. Для клинициста оценка степени митохондриальной дисфункции имеет существенное значение как для формирования представлений о сути и степени происходящих на тканевом уровне процессов, так и для разработки плана терапевтической коррекции патологического состояния .

Понятие «митохондриальные болезни» сформировалось в медицине в конце ХХ века благодаря открытым незадолго до этого наследственным заболеваниям, основными этиопатогенетическими факторами которых являются мутации генов, ответственных за синтез митохондриальных белков . В первую очередь были изучены болезни, связанные с мутациями открытой в начале 60-х годов митохондриальной ДНК. Эта ДНК, имеющая относительно простое строение и напоминающая кольцевую хромосому бактерий, была детально изучена. Полная первичная структура митохондриальной ДНК (митДНК) человека была опубликована в 1981 г.), и уже в конце 80-х годов была доказана ведущая роль ее мутаций в развитии ряда наследственных заболеваний. К последним относятся наследственная атрофия зрительных нервов Лебера, синдром NARP (нейропатия, атаксия, пигментный ретинит), синдром MERRF (миоклонус эпилепсия с «рваными» красными волокнами в скелетных мышцах), синдром MELAS (митохондриальная энцефаломиопатия, лактат-ацидоз, инсультоподобные эпизоды), синдром Кернса-Сейра (пигментный ретинит, наружная офтальмоплегия, блокада сердца, птоз, мозжечковый синдром), синдром Пирсона (поражение костного мозга, панкреатическая и печеночная дисфункции) и др. Число описаний таких болезней увеличивается с каждым годом. По последним данным, совокупная частота наследственных болезней, связанных с мутациями митДНК, достигает 1:5000 человек общего населения.

В меньшей степени изучены наследственные митохондриальные дефекты, связанные с повреждением ядерного генома. На сегодняшний день их известно сравнительно немного (различные формы младенческих миопатий, болезни Альперса, Лея, Барта, Менкеса, синдромы недостаточности карнитина, некоторых ферментов цикла Кребса и дыхательной цепи митохондрий). Можно предположить, что их число должно быть гораздо больше, поскольку гены, кодирующие информацию 98% митохондриальных белков, находятся именно в ядре.

В целом можно сказать, что изучение болезней, причиной которых являются наследственные нарушения митохондриальных функций, произвело своего рода революцию в современных представлениях о медицинских аспектах энергетического обмена человека. Помимо вклада в теоретическую патологию и медицинскую систематику, одним из главных достижений медицинской «митохондриологии» явилось создание эффективного диагностического инструментария (клинические, биохимические, морфологические и молекулярногенетические критерии полисистемной митохондриальной недостаточности), позволившего оценивать полисистемные нарушения клеточного энергообмена.

Что касается психиатрии, то уже в 30-е годы ХХ столетия были получены данные о том, что у больных шизофренией после физической нагрузки резко повышается уровень молочной кислоты. Позднее в виде оформленного научного предположения появился постулат о том, что какие-то регулирующие энергообмен механизмы ответственны за отсутствие «психической энергии» при этом заболевании . Однако еще довольно долго такие предположения воспринимались как, мягко говоря, «малоперспективные с научной точки зрения». В 1965 г. S. Kеty писал: «Трудно представить, что генерализованный дефект энергетического метаболизма - процесс, имеющий фундаментальное значение для каждой клетки тела, - может нести ответственность за высокоспециализированные особенности шизофрении ». Тем не менее в последующее 40 лет ситуация изменилась. Успехи «митохондриальной медицины» были столь убедительны, что стали привлекать внимание более широкого круга врачей, в том числе и психиатров. Итог последовательному росту числа соответствующих исследований был подведен в работе A. Gardner и R. Boles «Есть ли будущее у «митохондриальной психиатрии»?» . Вопросительная форма вынесенного в название постулата несла в себе оттенок преувеличенной скромности. Объем информации, приведенный в статье, был настолько большим, а логика авторов - так безупречна, что сомневаться в перспективности «митохондриальной психиатрии» уже не приходилось.

На сегодняшний день существует несколько групп доказательств участия нарушения энергетических процессов в патогенезе психических заболеваний. Ниже рассматривается каждая из групп доказательств.

Нарушения психики при митохондриальных болезнях

Различия в пороговой чувствительности тканей к недостаточности продукции АТФ накладывает существенный отпечаток на клиническую картину митохондриальных болезней. В этом отношении в первую очередь представляет интерес нервная ткань как наиболее энергозависимая. От 40 до 60% энергии АТФ в нейронах тратится на поддержание ионного градиента на их наружной оболочке и осуществление передачи нервного импульса. Поэтому нарушения функции центральной нервной системы при классических «митохондриальных болезнях» имеют первостепенное значение и дают основание называть основной симптомокомплекс «митохондриальными энцефаломиопатиями». Клинически на первый план при этом вышли такие мозговые нарушения, как умственная отсталость, судороги и инсультоподобные эпизоды. Выраженность этих форм патологии в сочетании с тяжелыми соматическими расстройствами может быть настолько большой, что другие, более мягкие нарушения, связанные, в частности, с личностными или эмоциональными изменениями, остаются в тени.

Накопление сведений о психических расстройствах при митохондриальных болезнях стало происходить в сравнении с указанными выше нарушениями значительно позднее. Тем не менее сейчас имеется достаточное число доказательств их существования. Были описаны депрессивные и биполярные аффективные расстройства, галлюцинации и личностные изменения при синдроме Кернса-Сейра , синдроме MELAS , хронической прогрессирующей наружной офтальмоплегии и наследственной оптической нейропатии Лебера .

Достаточно часто развитию классических признаков митохондриального заболевания предшествуют умеренно выраженные психические расстройства. Поэтому больные могут первоначально наблюдаться у психиатров. В этих случаях другие симптомы митохондриальной болезни (фотофобия, вертиго, повышенная утомляемость, мышечная слабость и др.) иногда расцениваются как психосоматические нарушения . Известный исследователь митохондриальной патологии P. Chinnery в статье, написанной совместно с D. Turnbull указывает: «Психиатрические осложнения постоянно сопутствуют митохондриальному заболеванию. Обычно они принимают форму реактивной депрессии... Мы неоднократно наблюдали случаи тяжелой депрессии и суицидальных попыток еще до того (курсив авторов статьи), как был установлен диагноз».

Трудности в установлении истинной роли психических расстройств при рассматриваемых болезнях бывают связаны также с тем, что психиатрические симптомы и синдромы могут расцениваться в одних случаях как реакция на трудную ситуацию, в других - как следствие органического поражения головного мозга (в последнем случае термин «психиатрия» вообще не используется).

По материалам ряда обзоров приведем список психических нарушений, описанных у больных с доказанными формами митохондриальных заболеваний 1 . Эти нарушения можно разделить на три группы. I. Психотические расстройства - галлюцинации (слуховые и зрительные), симптомы шизофрении и шизофреноподобных состояний, делирий. В ряде случаев указанные расстройства следуют за прогрессирующими когнитивными нарушениями. II. Аффективные и тревожные расстройства - биполярные и униполярные депрессивные состояния (они описываются наиболее часто), панические состояния, фобии. III. Когнитивные нарушения в виде синдрома дефицита внимания с гиперактивностью. Этот синдром был описан не только у больных с диагнозом «митохондриального» заболевания, но и у их родственников. Описан , в частности, случай, когда заболевание, в основе которого лежала делеция одной нуклеотидной пары митДНК в области гена транспортной РНК, впервые проявилось в школьные годы у мальчика в виде синдрома дефицита внимания с гиперактивностью. Прогрессирование митохондриальной энцефаломиопатии привело к смерти этого больного в возрасте 23 лет. IV. Расстройства личности. Такие расстройства были описаны в ряде случаев с подтвержденным молекулярногенетическими исследованиями диагнозом. Как правило, расстройства личности развиваются после когнитивных нарушений. Описан случай аутизма у больного с точковой мутацией митДНК в области гена транспортной РНК .

Общие признаки, характерные для митохондриальных и психических заболеваний

Речь идет об определенном клиническом сходстве некоторых психических заболеваний и митохондриальных синдромов, а также общих типах их наследования.

Прежде всего обращают на себя внимание данные о превалировании случаев наследования по материнской линии некоторых психических заболеваний, в частности биполярных расстройств . Такое наследование не может быть объяснено с позиций аутосомных механизмов, а равное количество мужчин и женщин среди пациентов с биполярными нарушениями делает маловероятным предположение о возможности в данном случае Х-сцепленного наследования. Наиболее адекватным объяснением при этом может быть концепция передачи наследственной информации через митДНК. Существует также тенденция к материнскому типу наследования и у больных шизофренией . Правда, в этом отношении имеется альтернативное используемому в нашем контексте объяснение: предполагается, что данная тенденция может обусловливаться неравными условиями больных разного пола в поиске партнера .

Косвенным подтверждением связи митохондриальных и некоторых психических заболеваний, является также тенденция к цикличности их клинических проявлений . В отношении таких болезней, как биполярные расстройства, это общеизвестно. Однако в настоящее время и в митохондриологии начинают накапливаться данные об ультра-, циркадианных и сезонных ритмах клинических проявлений дизэнергетических состояний. Эта особенность даже определила название одной из их нозологических митохондриальных цитопатий - «синдром циклической рвоты» («cyclic vomiting syndrome»).

Наконец, рассматриваемое сходство двух групп заболеваний выступает в сопутствующих их соматических признаках. Такие хорошо знакомые психиатрам психосоматические симптомы, как нарушения слуха, мышечная боль, утомляемость, мигрени, синдром раздраженного кишечника , постоянно описываются в симптомокомплексе митохондриальных заболеваний. Как пишут A. Gardner и R. Bоles , «если митохондриальная дисфункция является одним из факторов риска развития некоторых психиатрических заболеваний, эти коморбидные соматические симптомы скорее могут быть следствием именно митохондриальной дисфункции, а не проявлением «коммуникативного дистресса», «ипохондриального паттерна» или «вторичного приобретения» («secondary gain»)». Иногда такие термины используются для обозначения феномена соматизации психических расстройств .

В заключение укажем еще на одно сходство: определяемое с помощью магниторезонансной томографии повышение плотности белого вещества отмечается не только при биполярных аффективных нарушениях и большой депрессии с поздним дебютом , но и в случаях развития ишемических изменений при митохондриальных энцефалопатиях .

Признаки митохондриальной дисфункции при психических заболеваниях

Шизофрения

Как говорилось выше, упоминания о признаках лактатацидоза и некоторых других биохимических изменений, свидетельствующие о нарушении энергообмена при шизофрении, начали появляться с 30-х годов ХХ века. Но только начиная с 90-х годов число соответствующих работ стало нарастать особенно заметно, причем вырос и методический уровень лабораторных исследований, что нашло отражение в ряде обзорных публикаций .

На основе опубликованных работ D. Ben-Shachar и D. Laifenfeld разделили все признаки митохондриальных нарушений при шизофрении на три группы: 1) морфологические нарушения митохондрий; 2) признаки нарушения системы окислительного фосфорилирования; 3) нарушения экспрессии генов, ответственных за митохондриальные белки. Это деление может быть подкреплено примерами из других работ.

При аутопсии мозговой ткани больных шизофренией L. Kung и R. Roberts было выявлено снижение числа митохондрий во фронтальной коре, хвостатом ядре и скорлупе. При этом было отмечено, что оно было менее выражено у больных, получавших нейролептики, в связи с чем авторы сочли возможным говорить о нормализации митохондриальных процессов в мозге под влиянием нейролептической терапии. Это дает основание упомянуть и статью Н.С. Коломеец и Н.А. Урановой о гиперплазии митохондрий в пресинаптических терминалях аксонов в области substantia nigra при шизофрении.

L. Cavelier и соавт. , исследуя аутопсийный материал мозга больных шизофренией, выявили снижение активности IV комплекса дыхательной цепи в хвостатом ядре.

Приведенные результаты позволили выдвинуть предположение о первичной или вторичной роли митохондриальной дисфункции в патогенезе шизофрении. Однако исследованный аутопсийный материал относился к больным, получавшим лечение нейролептиками, и, естественно, митохондриальные нарушения были связаны с лекарственным воздействием. Отметим, что подобные предположения, часто небезосновательные, сопровождают всю историю обнаружения митохондриальных изменений в различных органах и системах при психических и других заболеваниях. Что касается возможного влияния собственно нейролептиков, то следует напомнить, что склонность к лактат-ацидозу у больных шизофренией обнаружена еще в 1932 г., почти за 20 лет до их появления.

Снижение активности различных компонентов дыхательной цепи было обнаружено во фронтальной и височной коре, а также базальных ганглиях мозга и иных тканевых элементах - тромбоцитах и лимфоцитах больных шизофренией. Это позволило говорить о полисистемном характере митохондриальной недостаточности . S. Whatlеy и соавт. , в частности, показали, что во фронтальной коре снижается активность IV комплекса, в височной - I, III и IV комплексов; в базальных ганглиях - I и III комплексов, никаких изменений при этом не было обнаружено в мозжечке. Следует отметить, что во всех исследованных участках активность внутримитохондриального фермента - цитратсинтазы - соответствовала контрольным значениям, что дало основание говорить о специфичности полученных результатов для шизофрении.

Дополнительно к рассмотренным исследованиям можно привести выполненную в 1999-2000 гг. работу J. Prince и соавт. , которые исследовали активность дыхательных комплексов в разных участках мозга больных шизофренией. Эти авторы не обнаружили признаков изменения активности I комплекса, однако активность IV комплекса была снижена в хвостатом ядре. При этом последняя, так же как и активность II комплекса, была повышена в скорлупе и в прилежащем ядре. Причем повышение активности IV комплекса в скорлупе достоверно коррелировало с выраженностью эмоциональной и когнитивной дисфункции, но не со степенью моторных нарушений.

Следует отметить, что авторы большинства приведенных выше работ признаки нарушений энергообмена объясняли воздействием нейролептиков. В 2002 г. были опубликованы очень интересные в этом отношении данные A. Gardner и соавт. о митохондриальных ферментах и продукции АТФ в мышечных биоптатах у больных шизофренией, лечившихся нейролептиками и не лечившихся ими. Они установили, что снижение активности митохондриальных ферментов и продукции АТФ было обнаружено у 6 из 8 не получавших нейролептики больных, а у находящихся на нейролептической терапии больных было установлено повышение продукции АТФ. Эти данные в определенной степени подтвердили сделанные ранее выводы в работе L. Kung и R. Roberts .

В 2002 г. были опубликованы результаты еще одной примечательной работы . В ней была изучена активность I комплекса дыхательной цепи в тромбоцитах 113 больных шизофренией в сравнении с 37 здоровыми. Больные были разделены на три группы: 1-я - с острым психотическим эпизодом, 2-я - с хронической активной формой и 3-я - с резидуальной шизофренией. Результаты показали, что активность I комплекса была достоверно повышена по сравнению с контролем у больных групп 1 и 2 и снижена у больных группы 3. Более того, была выявлена достоверная корреляция между полученными биохимическими показателями и тяжестью клинических симптомов заболевания. Аналогичные изменения были получены при исследовании в этом же материале РНК и белка флавопротеиновых субъединиц I комплекса. Результаты этого исследования, таким образом, не только подтвердили высокую вероятность полисистемной митохондриальной недостаточности при шизофрении, но и позволили авторам рекомендовать соответствующие лабораторные методы для мониторинга заболевания.

Спустя 2 года в 2004 г. D. Ben-Shachar и соавт. опубликовали интересные данные о влиянии на дыхательную цепь митохондрий дофамина, которому отводят существенную роль в патогенезе шизофрении . Было установлено, что дофамин может ингибировать активность I комплекса и продукцию АТФ. При этом активность IV и V комплексов не изменяется. Оказалось, что в отличие от дофамина норадреналин и серотонин на продукцию АТФ не влияют.

Примечателен сделанный в указанных выше работах акцент на дисфункции I комплекса дыхательной цепи митохондрий. Такого рода изменение может отражать относительно умеренные нарушения митохондриальной активности, более значимые с точки зрения функциональной регуляции энергообмена, чем грубые (близкие к летальным для клетки) падения активности цитохромоксидазы .

Кратко остановимся теперь на генетическом аспекте митохондриальной патологии при шизофрении.

В 1995-1997 гг. L. Cavelier и соавт. было установлено, что уровень «обычной делеции» митДНК (наиболее часто встречающаяся делеция 4977 пар нуклеотидов, затрагивающая гены субъединиц I, IV и V комплексов и лежащая в основе нескольких тяжелых митохондриальных заболеваний, таких как синдром Кернса-Сейра и др.) не изменен в аутопсийном материале мозга больных шизофренией, не накапливается с возрастом и не коррелирует с измененной активностью цитохромоксидазы. Секвенируя митохондриальный геном у больных шизофренией, исследователи этой группы показали наличие отличного от контроля полиморфизма гена цитохрома b.

В указанные годы была опубликована также серия работ группы R. Marchbanks и соавт. , изучавших экспрессию как ядерной, так и митохондриальной РНК во фронтальной коре в случаях шизофрении. Они выявили, что все количественно увеличенные по сравнению с контролем последовательности имели отношение к митохондриальным генам. Была существенно повышена, в частности, экспрессия митохондриального гена 2-й субъединицы цитохромоксидазы. Четыре других гена имели отношение к рибосомальной РНК митохондрий.

Японские исследователи , исследуя 300 случаев шизофрении, не нашли признаков мутации 3243AG (вызывающей нарушение в I комплексе при синдроме MELAS). Не было обнаружено повышенной мутационной частоты в митохондриальных генах 2-й субъединицы I комплекса, цитохрома b и митохондриальных рибосом при шизофрении в работе K. Gentry и V. Nimgaonkar .

R. Marchbanks и соавт. обнаружили мутацию в 12027 паре нуклеотидов митДНК (ген 4-й субъединицы I комплекса), которая имелась у больных шизофренией мужчин и которой не было у женщин.

Характеристика трех ядерных генов комплекса I была изучена в префронтальной и зрительной коре больных шизофренией R. Karry и соавт. . Они установили, что транскрипция и трансляция некоторых субъединиц была снижена в префронтальной коре и повышена - в зрительной (авторы интерпретировали эти данные в соответствии с представлениями о «гипофронтальности» при шизофрении). При изучении же генов (включая гены митохондриальных белков) в ткани гиппокампа у получавших лечение нейролептиками больных шизофренией никаких изменений выявлено не было .

Японские исследователи K. Iwamoto и соавт. , изучая изменения в генах, ответственных за наследственную информацию для митохондриальных белков, в префронтальной коре при шизофрении в связи с лечением нейролептиками, получили доказательства в пользу лекарственного воздействия на клеточный энергообмен.

Приведенные выше результаты могут быть дополнены данными прижизненных исследований, которые были приведены в обзоре W. Kаton и соавт. : при изучении с помощью магнитно-резонансной спектроскопии распределения фосфорного изотопа 31Р было выявлено снижение уровня синтеза АТФ в базальных ганглиях и височной доле головного мозга больных шизофренией.

Депрессия и биполярные аффективные расстройства

Японскими исследователями T. Kato и соавт. при магнитно-резонансной спектроскопии было установлено снижение внутриклеточной рН и уровня фосфокреатина в лобной доле головного мозга у больных с биполярными расстройствами, в том числе не получавших лечения. Этими же авторами снижение уровня фосфокреатина в височной доле было выявлено у резистентных к литиевой терапии больных. Другие авторы нашли снижение уровня АТФ в лобной доле и базальных ганглиях больных с большой депрессией. Заметим, что сходные признаки наблюдались у больных некоторыми митохондриальными болезнями .

Что касается молекулярно-генетических данных, сразу следует отметить, что результаты ряда работ свидетельствуют об отсутствии доказательств участия делеций митДНК в развитии расстройств настроения.

Ряд исследований полиморфизма митДНК, помимо самого факта различия ее гаплотипов у больных с биполярными нарушениями и обследуемых из контрольной группы, выявили некоторые мутации, характерные для первых, в частности, в позициях 5178 и 10398 - обе позиции находятся в зоне генов I комплекса .

Имеются сообщения о наличии мутаций в генах I комплекса, причем не только в митохондриальных, но и ядерных. Так, в культурах лимфобластоидных клеток, полученных от больных с биполярными расстройствами, была обнаружена мутация в гене NDUFV2, локализованного в 18-й хромосоме (18р11), и кодирующего одну из субъединиц I комплекса . При секвенировании митДНК больных с биполярными нарушениями была выявлена характерная для них мутация в позиции 3644 гена субъединицы ND1, также относящейся к I комплексу . Повышение уровня трансляции (но не транскрипции) было обнаружено в отношении некоторых субъединиц I комплекса в зрительной коре больных с биполярными расстройствами . Среди других исследований приведем две работы , в которых были исследованы гены дыхательной цепи и найдены их молекулярногенетические нарушения в префронтальной коре и гиппокампе больных с биполярными расстройствами. В одной из работ A. Gardner и соавт. у больных с большой депрессией был выявлен ряд нарушений митохондриальных ферментов и снижение уровня продукции АТФ в скелетно-мышечной ткани, при этом была обнаружена достоверная корреляция между степенью снижения продукции АТФ и клиническими проявлениями психического расстройства.

Другие психические расстройства

Исследований, касающихся митохондриальной дисфункции при других психических расстройствах, немного. Часть из них упоминалась в предыдущих разделах обзора. Здесь же специально упомянем работу P. Filipek и соавт. , в которой были описаны 2 ребенка с аутизмом и мутацией в 15-й хромосоме, в участке 15q11-q13. У обоих детей выявлены умеренная моторная задержка развития, летаргия, выраженная гипотония, лактат-ацидоз, снижение активности III комплекса и митохондриальная гиперпролиферация в мышечных волокнах. Эта работа примечательна тем, что в ней впервые были описаны митохондриальные нарушения в симптомокомплексе заболевания, этиологически связанного с определенным участком генома.

Генеалогические данные, касающиеся возможной роли митохондриальных нарушений в патогенезе психических заболеваний

Выше мы уже упоминали о такой особенности ряда психических болезней, как повышенная частота случаев наследования по материнской линии, которая может косвенно указывать на участие митохондриальной патологии в их патогенезе. Однако в литературе существуют и более убедительные доказательства последнего.

В 2000 г. были опубликованы данные, полученные F. McMahon и соавт. , секвенировавших весь митохондриальный геном у 9 неродственных пробандов, каждый из которых происходил из большой семьи с передачей биполярных расстройств по материнской линии. Явных отличий гаплотипов по сравнению с контрольными семьями выявлено не было. Однако по некоторым позициям митДНК (709, 1888, 10398 и 10463) была обнаружена диспропорция между больными и здоровыми. При этом можно отметить совпадение данных по позиции 10398 с уже упоминавшимися данными японских авторов , которые предположили, что 10398А-полиморфизм митДНК является фактором риска развития биполярных нарушений.

Наиболее существенным генеалогическим доказательством роли митохондриальных дисфункций в развитии психических расстройств являются факты наличия у больных с классическими митохондриальными болезнями родственников (чаще по материнской линии) с умеренными психическими нарушениями. Среди таких нарушений часто упоминаются тревога и депрессия . Так, в работе J. Shoffner и соавт. было установлено, что выраженность депрессии у матерей «митохондриальных» больных в 3 раза превышает показатели контрольной группы.

Заслуживает внимания работа B. Burnet и соавт. , которые в течение 12 мес проводили анонимный опрос больных с митохондриальными заболеваниями, а также членов их семей. В числе вопросов были касающиеся состояния здоровья родителей и ближайших родственников больных (по отцовской и материнской линиям). Были, таким образом, исследованы 55 семей (группа 1) с предполагаемым материнским и 111 семей (группа 2) с предполагаемым нематеринским типом наследования митохондриального заболевания. В результате у родственников пациентов по материнской линии, по сравнению с отцовской, была выявлена большая частота нескольких патологических состояний. Среди них наряду с мигренями и синдромом раздраженного кишечника была и депрессия. В группе 1 кишечные дисфункции, мигрень и депрессия наблюдались у бoльшего процента матерей из обследованных семей - 60, 54 и 51% соответственно; во 2-й группе - у 16, 26 и 12% соответственно (р<0,0001 для всех трех симптомов). У отцов из обеих групп это число составляло примерно 9-16%. Достоверное преобладание указанных признаков имело место и у других родственников по материнской линии. Этот факт является существенным подтверждением гипотезы о возможной связи депрессии с неменделевским наследованием, в частности с дисфункцией митохондрий.

Фармакологические аспекты митохондриальной патологии при психических заболеваниях

Влияние применяемых в психиатрии лекарственных средств на функции митохондрий

В предыдущих разделах обзора мы уже кратко касались вопросов терапии. Обсуждался, в частности, вопрос о возможном действии нейролептиков на митохондриальные функции. Было установлено, что хлорпромазин и другие производные фенотиазина, а также трициклические антидепрессанты, способны влиять на энергообмен в ткани мозга : они могут снижать уровень окислительного фосфорилирования в отдельных участках мозга, способны разобщать окисление и фосфорилирование, снижать активность I комплекса и АТФазы, понижать уровень утилизации АТФ. Однако интерпретация фактов в этой области требует большой осторожности. Так, разобщение окисления и фосфорилирования под влиянием нейролептиков отмечено отнюдь не во всех областях мозга (она не определяется в коре, таламусе и хвостатом ядре). Кроме того, существуют экспериментальные данные о стимулировании митохондриального дыхания нейролептиками . В предыдущих разделах обзора мы также приводим работы, свидетельствующие о позитивном действии нейролептиков на функцию митохондрий.

Карбамазепин и вальпроаты известны своей способностью подавлять функции митохондрий. Карбамазепин приводит к повышению уровня лактата в мозге, а вальпроаты способны ингибировать процессы окислительного фосфорилирования . Такого же рода эффекты (правда, только в высоких дозах) были выявлены при экспериментальном изучении ингибиторов обратного захвата серотонина .

Литий, достаточно широко используемый при лечении биполярных расстройств , также, по-видимому, может оказывать положительное влияние на процессы клеточного энергообмена. Он конкурирует с ионами натрия, участвуя в регуляции работы кальциевых насосов в митохондриях. A. Gardner и R. Boles в своем обзоре приводят слова T. Gunter - известного специалиста по обмену кальция в митохондриях, который полагает, что литий «может воздействовать на скорость, с которой эта система адаптируется к различным состояниям и различной потребности в АТФ». Кроме того, предполагается, что литий снижает активацию апоптозного каскада .

A. Gardner и R. Boles приводят в упомянутом обзоре много косвенных клинических свидетельств позитивного эффекта психотропных препаратов на симптомы, предположительно зависящие от дизэнергетических процессов. Так, внутривенное введение аминазина и других нейролептиков снижает головную боль при мигрени . Хорошо известна эффективность трициклических антидепрессантов в лечении мигрени , синдрома циклической рвоты и синдрома раздраженного кишечника . Карбамазепин и вальпроаты используются в лечении невралгий и других болевых синдромов, включая мигрень . При лечении мигрени также эффективны литий и ингибиторы обратного захвата серотонина .

Анализируя приведенную выше достаточно противоречивую информацию, можно сделать вывод, что психотропные средства, несомненно, способны влиять на процессы энергообмена головного мозга и митохондриальную активность. Причем влияние это - не однозначно стимулирующее или ингибирующее, а, скорее, «регулирующее». Оно при этом может быть разным в нейронах различных отделов мозга.

Сказанное выше позволяет предположить, что недостаточность энергии в мозге, возможно, касается в первую очередь областей особо затронутых патологическим процессом.

Эффективность энерготропных препаратов при психических расстройствах

В аспекте рассматриваемой проблемы важно получение свидетельств об уменьшении или исчезновении психопатологических составляющих митохондриальных синдромов.

В указанном аспекте в первую очередь заслуживает внимания сообщение T. Suzuki и соавт. о больном с шизофреноподобными расстройствами на фоне синдрома MELAS. После применения коэнзима Q10 и никотиновой кислоты у пациента на несколько дней исчез мутизм. Имеется также работа , в которой приведены данные об успешном применении дихлорацетата (часто употребляемого в «митохондриальной медицине» для снижения уровня лактата) у 19-летнего мужчины с синдромом MELAS, в отношении влияния на картину делирия со слуховыми и зрительными галлюцинациями.

В литературе имеется также описание истории больного с синдромом MELAS с выявленной точковой мутацией 3243 митДНК. У этого пациента развился психоз со слуховыми галлюцинациями и бредом преследования, который удалось купировать в течение недели низкими дозами галоперидола. Однако позднее у него развились мутизм и аффективная тупость, которые не поддавались лечению галоперидолом, но исчезли после лечения в течение месяца идебеноном (синтетический аналог коэнзима Q10) в дозе 160 мг/сут . Еще у одной пациентки с синдромом MELAS коэнзим Q10 в дозе 70 мг/сут помог справиться с манией преследования и агрессивным поведением. Успешность применения коэнзима Q10 при лечении синдрома MELAS констатирована и в работе : речь идет о больном, у которого не только предотвратили инсультоподобные эпизоды, но и купировали головные боли, тиннит и психотические эпизоды.

Имеются сообщения и об эффективности энерготропной терапии у больных при психических заболеваниях . Так, был описан 23-летний больной с терапевтически резистентной депрессией, выраженность которой существенно уменьшилась после 2-месячного применения коэнзима Q10 в дозе 90 мг в сутки . Подобный же случай описан и в работе . Применение карнитина в комплексе с кофакторами энергообмена оказалось эффективным при лечении аутизма .

Таким образом, в современной литературе имеются определенные доказательства существенной роли митохондриальных нарушений в патогенезе психических расстройств. Отметим, что в этом обзоре мы не останавливались на нейродегенеративных болезнях пожилого возраста, для большинства которых важное значение митохондриальных нарушений уже доказано, и их рассмотрение требует отдельной публикации.

На основании приведенных данных можно утверждать, что назрела необходимость объединения усилий психиатров и специалистов, занимающихся митохондриальными болезнями, направленных как на изучение дизэнергетических основ нарушений высшей нервной деятельности, так и анализ психопатологических проявлений болезней, связанных с нарушениями клеточного энергообмена. В этом аспекте требуют внимания как новые диагностические (клинические и лабораторные) подходы, так и разработка новых способов лечения.

1 Следует отметить, что среди cоответствующих описаний большое место занимают случаи с выявленной мутацией митДНК 3243AG - общепризнанной причиной развития синдрома MELAS.

Литература

  1. Кнорре Д.Г., Мызина С.Д. Биологическая химия. М: Наука 2002.
  2. Ленинджер А. Основы биохимии. Под ред. В.А. Энгельгардта. М: Мир 1985.
  3. Лукьянова Л.Д. Митохондриальная дисфункция - типовой патологический процесс, молекулярный механизм гипоксии. В кн.: Проблемы гипоксии: молекулярные, физиологические и медицинские аспекты. Под ред. Л.Д. Лукьяновой, И.Б. Ушакова. М - Воронеж: Истоки 2004; 8-50.
  4. Северин Е.С., Алейникова Т.Л., Осипов Е.В. Биохимия. М: Медицина 2000.
  5. Сухоруков В.С. Врожденные дисфункции митохондриальных ферментов и их роль в формировании тканевой гипоксии и связанных с ней патологических состояний. В кн.: Проблемы гипоксии: молекулярные, физиологические и медицинские аспекты. Под ред. Л.Д. Лукьяновой, И.Б.Ушакова. М: Истоки 2004; 439-455.
  6. Сухоруков В.С. К разработке рациональных основ энерготропной терапии. Рациональная фармакотер 2007; 2: 40-47.
  7. Altschule M.D. Carbohydrate metabolism in mental disease: associated changes in phosphate metabolism. In: H.E. Himwich (ed.). Biochemistry, schizophrenias, and affective illnesses. Baltimore 1979; 338-360.
  8. Altshuler L.L., Curran J.G., Hauser P. et al. T2 hyperintensities in bi polar disorder; magnetic resonance imaging comparison and literature meta-analysis. Am J Psychiat 1995; 152: 1139-1144.
  9. Andersen J.M., Sugerman K.S., Lockhart J.R., Weinberg W.A. Effective prophylactic therapy for cyclic vomiting syndrome in children using amitri ptyline or cyproheptadine. Pediatrics 1997; 100: 977-81.
  10. Baldassano C.F., Ballas C.A., O’Reardon J.P. Rethinking the treatment paradigm for bi polar depression: the importance of longterm management. CNS Spectr 2004; 9: Suppl 9: 11-18.
  11. Barkovich A.J., Good W.V., Koch T.K., Berg B.O. Mitochondrial disorders: analysis of their clinical and imaging characteristics. AJNR Am J Neuroradiol 1998; 14: 1119-1137.
  12. Ben-Shachar D. Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem 2002; 83: 1241-1251.
  13. Ben-Shachar D., Laifenfeld D. Mitochondria, synaptic plasticity, and schizophrenia. Int Rev Neurobiol 2004; 59: 273-296.
  14. Ben-Shachar D., Zuk R., Gazawi H., Ljubuncic P. Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders. Biochem Pharmacol 2004; 67: 1965-1974.
  15. Berio A., Piazzi A. A case of Kearns-Sayre syndrome with autoimmune thyroiditis and possible Hashimoto encephalopathy. Panminerva Med 2002; 44: 265-269.
  16. Boles R.G., Adams K., Ito M., Li B.U. Maternal inheritance in cyclic vomiting syndrome with neuromuscular disease. Am J Med Genet A 2003; 120: 474-482.
  17. Boles R.G., Burnett B.B., Gleditsch K. et al. A high predisposition to depression and anxiety in mothers and other matrilineal relatives of children with presumed maternally inherited mitochondrial disorders. Am J Med Genet Neuropsychiatr Genet 2005; 137: 20-24.
  18. Brown F.W., Golding J.M., Smith G.R.Jr. Psychiatric comorbidity in primary care somatization disorder. Psychosom Med 1990; 52: 445- 451.
  19. Burnet B.B., Gardner A., Boles R.G. Mitochondrial inheritance in depression, dysmotility and migraine? J Affect Disord 2005; 88: 109- 116.
  20. Cavelier L., Jazin E.E., Eriksson I. et al. Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics. Genomics 1995; 29: 217-224.
  21. Chang T.S., Johns D.R., Walker D. et al. Ocular clinicopathologic study of the mitochondrial encephalomyopathy overlap syndromes. Arch Ophthalmol 1993; 111: 1254-1262.
  22. Chinnery P.F., Turnbull D.M. Mitochondrial medicine. Q J Med 1997; 90: 657-667.
  23. Citrome L. Schizophrenia and valproate. Psychopharmacol Bull 2003;7: Suppl 2: 74-88.
  24. Corruble E., Guelfi J.D. Pain complaints in depressed inpatients. Psychopathology 2000; 33: 307-309.
  25. Coulehan J.L., Schulberg H.C., Block M.R., Zettler-Segal M. Symptom patterns of depression in ambulatory medical and psychiatric patients. J Nerv Ment Dis 1988; 176: 284-288.
  26. Crowell M.D., Jones M.P., Harris L.A. et al. Antidepressants in the treatment of irritable bowel syndrome and visceral pain syndromes. Curr Opin Investig Drugs 2004; 5: 736-742.
  27. Curti C., Mingatto F.E., Polizello A.C. et al. Fluoxetine interacts with the li pid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity. Mol Cell Biochem 1999; 199: 103-109.
  28. Decsi L. Biochemical effects of drugs acting on the central nervous system. Chlorpromazine. In: E. Jucker (ed.). Progress in drug research. Basel und Stuttgart: Birkhauser Verlag 1965; 139-145.
  29. Domino E.F., Hudson R.D., Zografi G. Substituted phenothiazines: pharmacology and chemical structure. In: A. Burger (ed.). Drugs affecting the central nervous system. London: Edward Arnold 1968; 327-397.
  30. Dror N., Klein E., Karry R. et al. State-dependent alterations in mitochondrial complex I activity in platelets: a potential peri pheral marker for schizophrenia. Mol Psychiat 2002; 7: 995-1001.
  31. Easterday O.D., Featherstone R.M., Gottlieb J.S. et al. Blood glutathione, lactic acid and pyruvic acid relationshi ps in schizophrenia. AMA Arch Neurol Psychiat 1952; 68: 48-57.
  32. Fabre V., Hamon M. Mechanisms of action of antidepressants: new data from Escitalopram . Encephale 2003; 29: 259-265.
  33. Fadic R., Johns D.R. Clinical spectrum of mitochondrial diseases. Semin Neurol 1996; 16: 11-20.
  34. Fattal O., Budur K., Vaughan A.J., Franco K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 2006; 47:1-7.
  35. Fili pek P.A., Juranek J., Smith M. et al. Mitochondrial disfunction in autistic patients with 15q inverted duplication. Ann Neurol 2003; 53: 801-804.
  36. Fisher H. A new approach to emergency department therapy of migraine headache with intravenous haloperidol: a case series. J Emerg Med 1995; 13: 119-122.
  37. Fuxe K., Rivera A., Jacobsen K.X. et al. Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. J Neural Transm 2005; 112: 65-76.
  38. Gardner A., Wibom R., Nennesmo I. et al. Mitochondrial function in neuroleptic-free and medicated schizophrenia . Eur Psychiat 2002; 17: Suppl 1: 183s.
  39. Gardner A., Johansson A., Wibom R. et al. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 2003; 76: 55-68.
  40. Gardner A., Pagani M., Wibom R. et al. Alterations of rcbf and mitochondrial dysfunction in major depressive disorder: a case report. Acta Psychiat Scand 2003; 107: 233-239.
  41. Gardner A. Mitochondrial dysfunction and alterations of brain HMPAO SPECT in depressive disorder - perspectives on origins of “somatization” . Karolinska Institutet, Neurotec Institution, Division of Psychiatry, Stockholm, 2004. http:// diss.kib.ki.se/2004/91-7349-903-X/thesis.pdf 42. Gardner A., Boles R.G. Is a “Mitochondrial Psychiatry” in the Future? A Review. Current Psychiat Rev 2005; 1: 255-271.
  42. Gentry K.M., Nimgaonkar V.L. Mitochondrial DNA variants in schizophrenia: association studies. Psychiat Genet 2000; 10: 27-31.
  43. Ghribi O., Herman M.M., Spaulding N.K., Savory J. Lithium inhibits aluminum-induced apoptosis in rabbit hippocampus, by preventing cytochrome c translocation, Bcl-2 decrease, Bax elevation and caspase3 activation. J Neurochem 2002; 82: 137-145.
  44. Goldstein J.M., Faraone S.V., Chen W.J. et al. Sex differences in the familial transmission of schizophrenia. Br J Psychiat 1990; 156: 819- 826.
  45. Graf W.D., Marin-Garcia J., Gao H.G. et al. Autism associated with the mitochondrial DNA G8363A transfer RNA(Lys) mutation. J Child Neurol 2000; 15: 357-361.
  46. Hardeland R., Coto-Montes A., Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int 2003; 20: 921-962.
  47. Holt I.J., Harding A.E., Morgan-Hughes J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988; 331: 717-719.
  48. Inagaki T., Ishino H., Seno H. et al. Psychiatric symptoms in a patient with diabetes mellitus associated with point mutation in mitochondrial DNA. Biol Psychiat 1997; 42: 1067-1069.
  49. Iwamoto K., Bundo M., Kato T. Altered expression of mitochondriarelated genes in postmortem brains of patients with bi polar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005; 14: 241-253.
  50. Karry R., Klein E., Ben Shachar D. Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiat 2004; 55: 676-684.
  51. Kato T., Takahashi S., Shioiri T., Inubushi T. Alterations in brain phosphorous metabolism in bi polar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 1993; 27: 53-60.
  52. Kato T., Takahashi S., Shioiri T. et al. Reduction of brain phosphocreatine in bi polar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 1994; 31: 125-133.
  53. Kato T., Takahashi Y. Deletion of leukocyte mitochondrial DNA in bi polar disorder. J Affect Disord 1996; 37: 67-73.
  54. Kato T., Stine O.C., McMahon F.J., Crowe R.R. Increased levels of a mitochondrial DNA deletion in the brain of patients with bi polar disorder. Biol Psychiat 1997a; 42: 871-875.
  55. Kato T., Winokur G., McMahon F.J. et al. Quantitative analysis of leukocyte mitochondrial DNA deletion in affective disorders. Biol Psychiat 1997; 42: 311-316.
  56. Kato T., Kato N. Mitochondrial dysfunction in bi polar disorder. Bipolar Disorder 2000; 2: 180-190.
  57. Kato T., Kunugi H., Nanko S., Kato N. Association of bi polar disorder with the 5178 polymorphism in mitochondrial DNA. Am J Med Genet 2000; 96: 182-186.
  58. Kato T. The other, forgotten genome: mitochondrial DNA and mental disorders. Mol Psychiat 2001; 6: 625-633.
  59. Kato T., Kunugi H., Nanko S., Kato N. Mitochondrial DNA polymorphisms in bi polar disorder. J Affect Disord 2001; 52: 151-164.
  60. Katon W., Kleinman A., Rosen G. Depression and somatization: a review. Am J Med 1982; 72: 127-135.
  61. Kegeles L.S., Humaran T.J., Mann J.J. In vivo neurochemistry of the brain in schizophrenia as revealed by magnetic resonance spectroscopy. Biol Psychiat 1998; 44: 382-398.
  62. Kety S.S. Biochemical theories of schizophrenia. Int J Psychiat 1965; 51: 409-446.
  63. Kiejna A., DiMauro S., Adamowski T. et al. Psychiatric symptoms in a patient with the clinical features of MELAS. Med Sci Monit 2002; 8: CS66-CS72.
  64. Kirk R., Furlong RA., Amos W. et al. Mitochondrial genetic analyses suggest selection against maternal lineages in bi polar affective disorder. Am J Hum Genet 1999; 65: 508-518.
  65. Koller H., Kornischka J., Neuen-Jacob E. et al. Persistent organic personality change as rare psychiatric manifestation of MELAS syndrome. J Neurol 2003; 250: 1501-1502.
  66. Kolomeets N.S., Uranova N.A. Synaptic contacts in schizophrenia: studies using immunocytochemical identification of dopaminergic neurons. Neurosci Behav Physiol 1999; 29: 217-221.
  67. Konradi C., Eaton M., MacDonald M.L. et al. Molecular evidence for mitochondrial dysfunction in bi polar disorder. Arch Gen Psychiat 2004; 61: 300-308.
  68. Kung L., Roberts R.C. Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse 1999; 31: 67-75.
  69. Lenaerts M.E. Cluster headache and cluster variants. Curr Treat Options Neurol 2003; 5: 455-466.
  70. Lestienne P., Ponsot G. Kearns-Sayre syndrome with muscle mitochondrial DNA deletion. Lancet 1988; 1: 885.
  71. Lindholm E., Cavelier L., Howell W.M. et al. Mitochondrial sequence variants in patients with schizophrenia. Eur J Hum Genet 1997; 5: 406-412.
  72. Lloyd D., Rossi E.L. Biological rhythms as organization and information. Biol Rev Camb Philos Soc 1993; 68: 563-577.
  73. Luft R. The development of mitochondrial medicine. Proc Natl Acad Sci USA 1994; 8731-8738.
  74. Luhrs W., Bacigalupo G., Kadenbach B., Heise E. Der einfluss von chlorpromazin auf die oxydative phosphoryliering von tumormitochondrien . Experientia 1959; 15: 376-377.
  75. Marchbanks R.M., Mulcrone J., Whatley S.A. Aspects of oxidative metabolism in schizophrenia. Br J Psychiat 1995; 167: 293-298.
  76. Marchbanks R.M., Ryan M., Day I.N. et al. A mitochondrial DNA sequence variant associated with schizophrenia and oxidative stress. Schizophr Res 2003; 65: 33-38.
  77. Matsumoto J., Ogawa H., Maeyama R. et al. Successful treatment by direct hemoperfusion of coma possibly resulting from mitochondrial dysfunction in acute valproate intoxication. Epilepsia 1997; 38: 950- 953.
  78. Maurer I., Zierz S., Moller H. Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 2001; 48: 125-136.
  79. McMahon F.J., Chen Y.S., Patel S. et al. Mitochondrial DNA sequence diversity in bi polar affective disorder. Am J Psychiat 2000; 157: 1058-1064.
  80. Miyaoka H., Suzuki Y., Taniyama M. et al. Mental disorders in diabetic patients with mitochondrial transfer RNA(Leu) (UUR) mutation at position 3243. Biol Psychiat 1997; 42: 524-526.
  81. Moldin S.O., Scheftner W.A., Rice J.P. et al. Association between major depressive disorder and physical illness. Psychol Med 1993; 23: 755- 761.
  82. Molnar G., Fava G.A., Zielezny M. et al. Measurement of subclinical changes during lithium prophylaxis: a longitudinal study. Psychopathology 1987; 20: 155-161.
  83. Moore C.M., Christensen J.D., Lafer B. et al. Lower levels of nucleoside triphosphate in the basal ganglia of depressed subjects: a phosphorous- 31 magnetic resonance spectroscopy study. Am J Psychiat 1997; 154: 116-118.
  84. Mulcrone J., Whatley S., Ferrier I., Marchbanks R.M. A study of altered gene expression in frontal cortex from schizophrenic patients using differential screening. Schizophr Res 1995; 14: 203-213.
  85. Munakata K., Tanaka M., Mori K. et al. Mitochondrial DNA 3644T>C mutation associated with bi polar disorder. Genomics 2004; 84: 1041- 1050.
  86. Murashita J., Kato T., Shioiri T. et al. Altered brain energy metabolism in lithium-resistant bi polar disorder detected by photic stimulated 31P-MR spectroscopy. Psychol Med 2000; 30: 107-115.
  87. Newman-Toker D.E., Horton J.C., Lessell S. Recurrent visual loss in Leber hereditary optic neuropathy. Arch Ophthalmol 2003; 121: 288-291.
  88. Norby S., Lestienne P., Nelson I. et al. Juvenile Kearns-Sayre syndrome initially misdiagnosed as a psychosomatic disorder. J Med Genet 1994; 31: 45-50.
  89. Odawara M., Arinami T., Tachi Y. et al. Absence of association between a mitochondrial DNA mutation at nucleotide position 3243 and schizophrenia in Japanese. Hum Genet 1998; 102: 708-709.
  90. Odawara M. Mitochondrial gene abnormalities as a cause of psychiatric diseases. Nucleic Acids Res 2002; Suppl 2: 253-254.
  91. Oexle K., Zwirner A. Advanced telomere shortening in respiratory chain disorders. Hum Mol Genet 1997; 6: 905-908.
  92. Onishi H., Kawanishi C., Iwasawa T. et al. Depressive disorder due to mitochondrial transfer RNALeu(UUR) mutation. Biol Psychiat 1997; 41: 1137-1139.
  93. Orsulak P.J., Waller D. Antidepressant drugs: additional clinical uses. J Fam Pract 1989; 28: 209-216.
  94. Prayson R.A., Wang N. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS) syndrome: an autopsy report. Arch Pathol Lab Med 1998; 122: 978-981.
  95. Prince J.A., Blennow K., Gottfries C.G. et al. Mitochondrial function is differentially altered in the basal ganglia of chronic schizophrenics. Neuropsychopharmacology 1999; 21: 372-379.
  96. Prince J.A., Harro J., Blennow K. et al. Putamen mitochondrial energy metabolism is highly correlated to emotional and intellectual impairment in schizophrenics. Neuropsychopharmacology 2000; 22: 284-292.
  97. Rajala U., Keinanen-Kiukaanniemi S., Uusimaki A., Kivela S.L. Musculoskeletal pains and depression in a middle-aged Finnish population. Pain 1995; 61: 451-457.
  98. Rango M., Bozzali M., Prelle A. et al. Brain activation in normal subjects and in patients affected by mitochondrial disease without clinical central nervous system involvement: a phosphorus magnetic resonance spectroscopy study. J Cereb Blood Flow Metab 2001; 21: 85-91.
  99. Rathman S.C., Blanchard R.K., Badinga L. et al. Dietary carbamazepine administration decreases liver pyruvate carboxylase activity and biotinylation by decreasing protein and mRNA expression in rats. J Nutr 2003; 133: 2119-2124.
  100. Ritsner M. The attribution of somatization in schizophrenia patients: a naturalistic follow-up study. J Clin Psychiat 2003; 64: 1370-1378.
  101. Rumbach L., Mutet C., Cremel G. et al. Effects of sodium valproate on mitochondrial membranes: electron paramagnetic resonance and transmembrane protein movement studies. Mol Pharmacol 1986; 30: 270-273.
  102. Saijo T., Naito E., Ito M. et al. Therapeutic effects of sodium dichloroacetate on visual and auditory hallucinations in a patient with MELAS. Neuropediatrics 1991; 22: 166-167.
  103. Scheffler L.E. A century of mitochondrial research: achievements and perspectives. Mitochondrion 2001; 1: 1: 3-31.
  104. Seeman P. Tardive dyskinesia, dopamine receptors, and neuroleptic damage to cell membranes. J Clin Psychopharmacol 1988; 8: 4 Suppl: 3S-9S.
  105. Shanske A.L., Shanske S., Silvestri G. et al. MELAS point mutation with unusual clinical presentation. Neuromuscul Disord 1993; 3: 191-193.
  106. Shapira A.H.V. Mitochondrial disorders. Biochim Biophys Acta 1999; 1410: 2: 99-102.
  107. Shimizu A., Kurachi M., Yamaguchi N. et al. Morbidity risk of schizophrenia to parents and siblings of schizophrenic patients. Jpn J Psychiat Neurol 1987; 41: 65-70.
  108. Shinkai T., Nakashima M., Ohmori O. et al. Coenzyme Q10 improves psychiatric symptoms in adult-onset mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes: a case report. Aust N Z J Psychiat 2000; 34: 1034-1035.
  109. Shoffner J.M., Bialer M.G., Pavlakis S.G. et al. Mitochondrial encephalomyopathy associated with a single nucleotide pair deletion in the mitochondrial tRNALeu(UUR) gene. Neurology 1995; 45: 286-292.
  110. Shoffner J.M., Wallace D.C. Oxidative phosphorylation diseases. In: C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle (eds.). The metabolic and molecular bases of inherited disease. 7th edition, McGraw-Hill, New York 1995; 1535-1629.
  111. Sillanpaa M. Carbamazepine, pharmacological and clinical uses. Acta Neurol Scand 1981; 64: Suppl 88: 11-13.
  112. Souza M.E., Polizello A.C., Uyemura S.A. et al. Effect of fluoxetine on rat liver mitochondria. Biochem Pharmacol 1994; 48: 535-541.
  113. Spellberg B., Carroll RM., Robinson E., Brass E. mtDNA disease in the primary care setting. Arch Intern Med 2001; 161: 2497-2500.
  114. Spina E., Perugi G. Antiepileptic drugs: indications other than epilepsy. Epileptic Disord 2004; 6: 57-75.
  115. Spinazzola A., Carrara F., Mora M., Zeviani M. Mitochondrial myopathy and ophthalmoplegia in a sporadic patient with the 5698G>A mitochondrial DNA mutation. Neuromuscul Disord 2004; 14: 815- 817.
  116. Starkov A.A., Simonyan R.A., Dedukhova V.I. et al. Regulation of the energy coupling in mitochondria by some steroid and thyroid hormones. Biochim Biophys Acta 1997; 1318: 173-183.
  117. Stine O.C., Luu S.U., Zito M. The possible association between affective disorder and partially deleted mitochondrial DNA. Biol Psychiat 1993; 33: 141-142.
  118. Stone K.J., Viera A.J., Parman C.L. Off-label applications for SSRIs. Am Fam Physician 2003; 68: 498-504.
  119. Sugimoto T., Nishida N., Yasuhara A. et al. Reye-like syndrome associated with valproic acid. Brain Dev 1983; 5: 334-347.
  120. Suzuki T., Koizumi J., Shiraishi H. et al. Mitochondrial encephalomyopathy (MELAS) with mental disorder. CT, MRI and SPECT findings. Neuroradiology 1990; 32:1: 74-76.
  121. Suzuki Y., Taniyama M., Muramatsu T. et al. Diabetes mellitus associated with 3243 mitochondrial tRNA(Leu(UUR)) mutation: clinical features and coenzyme Q10 treatment. Mol Aspects Med 1997; Suppl 18: S181-188.
  122. Swerdlow R.H., Binder D., Parker W.D. Risk factors for schizophrenia. N Engl J Med 1999; 341: 371-372.
  123. Thomeer E.C., Verhoeven W.M., van de Vlasakker C.J., Klompenhouwer J.L. Psychiatric symptoms in MELAS; a case report. J Neurol Neurosurg Psychiat 1998; 64: 692-693.
  124. Volz H.P., Rzanny R., Riehemann S. et al. 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients. Eur Arch Psychiat Clin Neurosci 1998; 248: 289-295.
  125. Wallace D.C., Singh G., Lott M.T. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988; 242: 1427-1430.
  126. Wang Q., Ito M., Adams K. et al. Mitochondrial DNA control region sequence variation in migraine headache and cyclic vomiting syndrome. Am J Med Genet 2004; 131A: 50-58.
  127. Washizuka S., Kakiuchi C., Mori K. et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bi polar disorder. Am J Med Genet 2003; 120B: 72-78.
  128. Whatley S.A., Curti D., Marchbanks R.M. Mitochondrial involvement in schizophrenia and other functional psychosis. Neurochem Res 1996; 21: 995-1004.
  129. Whatley S.A., Curti D., Das Gupta F. et al. Superoxide, neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normals and schizophrenic patients. Mol Psychiat 1998; 3: 227-237.
  130. Wolyniec P.S., Pulver A.E., McGrath J.A., Tam D. Schizophrenia gender and familial risk. J Psychiat Res 1992; 26: 17-27.
  131. Yovell Y., Sakeim H.A., Epstein D.G. et al. Hearing loss and asymmetry in major depression. J Neuropsychiat 1995; 7: 82-89.
  132. Zeviani M., Moraes C.T., DiMauro S. et al. Deletions of mitochondrial DNA in Kearns-Seyre syndrome. Neurology 1988; 38: 1339-1346.

Явление гетероплазмии определяет существование в одной клетке нормальных митохондрий и митохондрий с нарушенной функцией. За счет первых клетка может функционировать какое-то время. Если продукция энергии в ней падает ниже определенного порога, то происходит компенсаторная пролиферация всех митохондрий, включая дефектные. В худшем положении оказываются клетки, которые потребляют много энергии: нейроны, мышечные волокна, кардиомиоциты.

Из-за утечки в дыхательной цепи митохондрии постоянно продуцируют свободные радикалы на уровне 1–2 % поглощенного кислорода. Количество продукции радикалов зависит от мембранного потенциала митохондрий, на изменения которого влияет состояние АТФ-зависимых калиевых каналов митохондрий. Открытие этих каналов влечет за собой возрастание образования свободных радикалов, повреждение других белков митохондриальных мембран и мтДНК. ДНК митохондрий не защищена гистонами и хорошо доступна для радикалов, что проявляется в изменении уровня гетероплазмии. Принято считать, что наличие 10 % митохондрий с измененной ДНК не оказывает влияния на фенотип.

4. КЛАССИФИКАЦИЯ И ОБЩАЯ ХАРАКТЕРИСТИКА

МИТОХОНДРИАЛЬНЫХ ЗАБОЛЕВАНИЙ

Единой этиологической классификации МЗ в настоящее время не существует из-за неопределенности вклада мутаций ядерного генома в их этиологию и патогенез. Существующие классификации основаны на 2-х принципах : локализации мутантного гена в мтДНК или яДНК и участии мутантного белка в реакциях окислительного фосфорилирования.

Этиологическая классификация (по, 2006) включает митохондриальные болезни, связанные с дефектами:


· мтДНК;

· яДНК;

· интергеномных взаимодействий.

Патогенетическая классификация (по, 2000) подразделяет митохондриальные болезни на обусловленные нарушением:

· карнитинового цикла;

· окисления жирных кислот;

· метаболизма пирувата;

· цикла Кребса;

· работы дыхательной цепи;

· сопряжения окисления и фосфорилирования.

В клинической практике объединяют комбинации часто встречающихся симптомов МЗ в синдромы.

Митохондриальные заболевания - гетерогенная группа заболеваний, характеризующихся генетическими и структурно-биохимическими дефектами митохондрий, нарушением тканевого дыхания. По происхождению МЗ делятся на первичные (наследственные) и вторичные.

Причинами наследственных МЗ являются мутации митохондриального и (или) ядерного генома.

К настоящему времени известно более 200 заболеваний, вызванных мутацией мтДНК.

По мере накопления клинико-диагностических данных в разных странах было установлено, что у детей примерно каждое третье наследственное метаболическое заболевание связано с митохондриями. По данным Н. Г. Даниленко, (2007) в популяциях частота митохондриальных болезней варьирует от 1:5000 до 1:35000. Минимальная частота МЗ в популяции взрослых жителей Великобритании оценивается как (1–3):10000.

Характеристика клинических особенностей МЗ представлена в таблице 2.

Таблица 2 - Клинические особенности митохондриальных заболеваний (по, 2007)

Клинические особенности

Патофизиологическое значение

Полисистемность, полиорганность, «необъяснимость» сочетания симптомов со стороны органов, не связанных по происхождению

Поражение органов, имеющих близкий «порог» чувствительности к нарушению окислительного фосфорилирования

Наличие острых эпизодов в дебюте заболевания или в его развернутой стадии

«Метаболический криз», связанный со срывом баланса между потребностями ткани в энергообеспечении и уровнем анаэробного дыхания

Вариабельный возраст начала симптоматики (от 1 до 7-го десятилетия жизни)

Вариабельный уровень мутантной мтДНК в разных тканях в различный момент времени

Усугубление симптоматики с возрастом

Нарастание числа мутаций мтДНК и ослабление интенсивности окислительного фосфорилирования по мере старения

Поражение большинства систем и органов при МЗ можно объяснить тем, что многие процессы, протекающие в организме энергозависимы. Относительная энергозависимость органов и тканей в порядке убывания: ЦНС, скелетные мышцы, миокарда, орган зрения, почки, печень, костный мозг, эндокринная система.

Нейронам необходимо большое количество АТФ для синтеза нейромедиаторов, регенерации, поддержания необходимого градиента Na + и К+, проведения нервного импульса. Скелетные мышцы в покое потребляют незначительные количества АТФ, но при физической нагрузке эти потребности возрастают в десятки раз. В миокарде постоянно совершается механическая работа, необходимая для циркуляции крови. Почки используют АТФ в процессе реабсорбции веществ при образовании мочи. В печени происходит синтез гликогена, жиров, белков и других соединений.

5. ДИАГНОСТИКА МИТОХОНДРИАЛЬНЫХ ЗАБОЛЕВАНИЙ

Митохондриальные болезни трудны для диагностики. Определяется это отсутствием строгой связи между сайтом мутации и клиническим фенотипом. Это значит, что одна и та же мутация может вызывать разные симптомы, а один и тот же клинический фенотип могут формировать разные мутации.

Поэтому для постановки диагноза митохондриального заболевания важен комплексный подход, основанный на генеалогическом, клиническом, биохимическом , морфологическом (гистологическом), генетическом анализах.

Генеалогический анализ

Наличие в семейном анамнезе синдрома внезапной младенческой смерти, кардиомиопатий, деменций, раннего инсульта, ретинопатий, диабета, задержки развития может указывать на митохондриальную природу имеющегося заболевания.

Клинические проявления митохондриальных заболеваний

Миопатический синдром : слабость и атрофия мышц, снижение миотонического тонуса, мышечные боли, непереносимость физической нагрузки (усиление мышечной слабости, появление рвоты и головной боли).


Центральная нервная система и органы чувств: летаргия, кома, задержка психомоторного развития, деменция, нарушение сознания, атаксия, дистония, эпилепсия, миоклонические судороги, «метаболический инсульт», слепота центрального происхождения, пигментный ретинит, атрофия зрительных нервов, нистагм, катаракта, офтальмоплегия, птоз, нарушение остроты зрения, гипоакузия, дизартрия, сенсорные нарушения, сухость слизистой рта, гипотония, снижение глубоких сухожильных рефлексов, инсультоподобные эпизоды, гемианопсия.

Периферическая нервная система: аксональная нейропатия, нарушение двигательной функции гастроинтестинального тракта.

Сердечно-сосудистая система: кардиомиопатия (обычно гипертрофическая), аритмия, нарушение проводимости.

Желудочно-кишечный тракт: частые диспептические явления (рвота, диарея), атрофия ворсинок кишечника, экзокринная недостаточность поджелудочной железы.

Печень: прогрессирующая печеночная недостаточность (особенно у младенцев), гепатомегалия.

Почки: тубулопатия (по типу синдрома Де Тони-Дебре-Фанкони: фосфатурия, глюкозурия, аминацидурия), нефрит, почечная недостаточность.

Эндокринная система: задержка роста, нарушение полового развития, гипогликемия, сахарный и несахарный диабет, гипотиреоз, гипопаратиреоидизм, гипоталамо-гипофизарная недостаточность, гиперальдостеронизм.

Система кроветворения: панцитопения, макроцитарная анемия .

Основные биохимические проявления митохондриальных заболеваний

Повышение уровня:

· лактата и пирувата в крови (ликворе);

· 3-гидроксимасляной и ацетоуксусной кислот в крови;

· аммиака в крови;

· аминокислот;

· жирных кислот с разной длиной цепи;

· миоглобина;

· продуктов перекисного окисления липидов;

· мочевой экскреции органических кислот.

Снижение:

· активности некоторых ферментов энергетического обмена в митохондриях;

· содержания общего карнитина в крови.

Лактатный ацидоз является практически постоянным спутником митохондриальных болезней, но проявляется и при других формах патологии. Поэтому более эффективным является измерение уровня лактата в венозной крови после умеренной физической нагрузки на велоэргометре.

Основные изменения структуры скелетной мышцы при митохондриальной недостаточности

Морфологическое исследование позволяет с помощью световой и электронной микроскопии в сочетании с гистохимическими методами выявить нарушения количества и строения митохондрий, признаки их дисфункций и снижения активности митохондриальных ферментов.

C ветовая микроскопия с применением различных видов специальной окраски, в т. ч. и для определения активности митохондриальных ферментов выявляет:

· феномен «рваных» (шероховатых) красных волокон (RRF - « ragged » red fibres ) в количестве более 5 % (при окраске по Гомори, Альтману напоминает разрыв волокон по периферии и обусловлен скоплением пролиферирующих генетически измененных митохондрий под сарколеммой);

· гистохимические признаки недостаточности митохондриальных ферментов (цикла Кребса, респираторной цепи), особенно цитратсинтетазы, сукцинатдегидрогеназы и цитохром-С-оксидазы;

· субсарколеммальное накопление гликогена, липидов, кальция (считают, что накопление жировых капель в различных тканях, в т. ч. в мышечных волокнах, происходит в результате нарушения окисления жирных кислот в митохондриях).

При электронной микроскопии определяют:

· пролиферацию митохондрий;

· скопления аномальных митохондрий под сарколеммой;

· полиморфизм митохондрий с нарушением формы и размера, дезорганизацией крист;

· наличие в митохондриях паракристаллических включений;

· наличие митохондриально-липидных комплексов.

Генетический анализ для подтверждения диагноза митохондриального заболевания

Обнаружение любого вида митохондриальной мутации с достаточно высоким соотношением аномальной и нормальной мтДНК подтверждает диагноз митохондриального заболевания или синдрома. Отсутствие митохондриальной мутации позволяет предполагать у пациента наличие патологии, связанной с мутацией яДНК.

Известно, что уровень гетероплазмии во многом определяет фенотипическое проявление мутации. Поэтому, при проведении молекулярного анализа необходимо оценивать количество мутантных мтДНК. Оценка уровня гетероплазмии включает детекцию мутации, однако методы обнаружения мутации не всегда учитывают уровень ее гетероплазмии.

1. Метод клонирования дает достоверные количественные результаты (наиболее трудоемкий и продолжительный).

2. Флуоресцентная ПЦР предоставляет более точные результаты при меньшей трудоемкости (не позволяет выявлять мелкие делеции и вставки).

3. Денатурирующая высокоразрешающая жидкостная хроматография дает воспроизводимые результаты при любых видах мутаций (делеции, вставки, точковые мутации), находящихся в состоянии гетероплазмии (оценка уровня гетероплазмии более точна по сравнению с 2-мя предыдущими).

4. ПЦР в реальном времени используется для обнаружения и количественной оценки мутаций мтДНК. Используют: гидролизуемые зонды (TaqMan ), интеркалирующий краситель SYBR .

Наиболее точные оценки дают 3 метода:

· минисеквенирование ( SNaP - shot ) - определение однонуклеотидных замен, делеций и инсерций короткими зондами (15–30 нуклеотидов). Участок ДНК несущий мутацию, например C T выделяется и аплифицируется с помощью ПЦР. Этот участок является матрицей. Зонд имеет идентичную структуру, массу 5485 Да, но короче матрицы на один нуклеотид. К смеси зонда и матрицы добавляют нуклеотиды Т и С. Если к зонду присоединится нуклеотид С, то матрица «дикого» типа и ее масса составит 5758 Да. Если нуклеотид Т - матрица была мутантного типа с массой 6102 Да. Затем массу полученных образцов определяют с помощью масс-спектрометра.

· Пиросеквенирование - сочетание секвенирования и синтеза. Матрицу инкубируют в смеси из 4-х ферментов, 4-х дезоксинуклеотидтрифосфатов (dATP , d СТ P , dG Т P , d ТТ P ) и 4-х терминаторов транскрипции dNTP . Присоединение комплементарного нуклеотида сопровождается флуоресцентной биохимической реакцией.

· Biplex Invader - позволяет обнаруживать сразу 2 мутации .

Однако, при сопоставимой точности Biplex Invader оказался наиболее простым в использовании, а SNaPshot - наиболее дорогостоящим.

В настоящее время предпочтение отдается чиповым технологиям , позволяющим анализировать основные патогенные мутации мтДНК сразу во множестве образцов, устанавливая при этом уровень гетероплазмии каждой отдельной мутации.

Алгоритм диагностики митохондриальных заболеваний (по , 2007)

1. Необходимо доказательное клиническое подозрение на наличие митохондриальной болезни. В типичных случаях это может быть выявление клинической картины, характерной для той или иной формы митохондриальной энцефаломиопатии (MELAS, MERRF и т. д.), однако «классические» варианты этих фенотипов встречаются сравнительно редко.

Выявление общепринятых лабораторных маркеров митохондриальной дисфункции, мультисистемного, полиорганного поражения (для этого необходим соответствующий целенаправленный поиск), а также материнского типа наследования указывают на митохондриальную природу болезни.

2. Исследование мтДНК в лимфоцитах (у пациентов с четкими фенотипами MELAS, MERRF, атрофией зрительных нервов Лебера). При выявлении искомой мутации диагноз конкретной митохондриальной болезни может считаться подтвержденным.

3. При отсутствии выявляемых мутаций в лимфоцитах проводят биопсию скелетной мышцы (обычно четырехглавой или дельтовидной), т. к. скелетная мышца является более надежным источником мтДНК (отсутствие клеточных делений в мышце способствует «удержанию» митохондрий, содержащих мутантную мтДНК). Образцы мышечных биоптатов делят на 3 части: одна - для микроскопического исследования (гистология, гистохимия и электронная микроскопия), вторая - для энзимологического и иммунологического анализа (изучение характеристик компонентов дыхательной цепи), третья - для молекулярно-генетического анализа.

4. При отсутствии известных мутаций мтДНК в мышечной ткани проводят развернутый молекулярно-генетический анализ - секвенирование всей цепи мтДНК (или кандидатных генов ядерной ДНК) с целью выявления нового варианта мутации.

5. Идентификация конкретного биохимического дефекта в том или ином звене дыхательной цепи митохондрий является альтернативой изучения скелетной мускулатуры.

6. ЛЕЧЕНИЕ МИТОХОНДРИАЛЬНЫХ ЗАБОЛЕВАНИЙ

В настоящее времени митохондриальные забо­левания практически не излечимы. Однако возможно либо отсрочить развитие заболевания, либо избежать наследования патогенной митохондриальной мутации.

Принципы терапии митохондриальных заболеваний

1. Симптоматическое лечение:

Диета составляется в зависимости от патогенеза.

· При патологии транспорта и окисления жирных кислот рекомендуется частое и дробное питание со снижением калорийности пищи.

· При нарушении обмена пировиноградной кислоты для восполнения дефицита ацетил-Ко-А используется кетогенная диета.

· При дефиците ферментов ЦТК применяется частое кормление.

· При дефиците дыхательной цепи и окислительного фосфорилирования снижают количество углеводов.

Медикаментозная терапия.

· Препараты, активизирующие перенос электронов в дыхательной цепи (коэнзим Q 10 , витамины К1 и К3, препараты янтарной кислоты, цитохром С).

· Кофакторы энзимных реакций энергетического обмена (никотинамид, рибофлавин, карнитин, липоевая кислота и тиамин).

· Средства, уменьшающие степень лактат-ацидоза (дихлорацетат, димефосфон).

· Антиоксиданты (убихинон, витамин С и Е).

Исключение препаратов, ингибирующих энергообмен (барбитураты, хлорамфеникол).

ИВЛ, противосудорожные препараты, ферменты поджелудочной железы, переливание компонентов крови.

Выбор редакции
Сэндвичи — поистине универсальное блюдо, которое подойдет как для плотного завтрака, так и для легкого обеда или перекуса в течение дня....

Шаг 1: Варим бульон. Для начала расскажу вам, в чем же отличие чучвары от русских пельменей. Ну, во-первых, фарш для приготовления...

Невозможно пройти мимо этого изысканного десерта – классики американской кухни. Торт Красный бархат не оставит вас равнодушным, как не...

Ингредиенты мякоть свинины - 500 г; лук - 2 шт.; кефир (или сметана) - 150 мл; молоко (или сливки) - 3 стол. ложки; картофельный крахмал...
Дорогой алкоголь требует правильного отношения к себе. Никто не мешает опрокинуть залпом рюмку, продемонстрировав тем самым свою...
Ингредиенты: куриные голени – 6 шт. лук – 1 шт. морковь – 1 шт. чеснок – 1-2 зуб. растительное масло – 1 ст.л. карри – по вкусу соль,...
Лазарь Лагин В книге «Тысяча и одна ночь» есть «Сказка о рыбаке». Вытянул рыбак из моря свои сети, а в них – медный сосуд, а в сосуде –...
Так называемое дело «Седьмой студии» начали рассматривать по существу в Мещанском суде столицы. Основным фигурантом дела является...
Курица в кефире маринуется минимум два часа, а затем запекается в духовке около 1 часа. Скажете долго? Но вы-то в это время занимаетесь...